Mesenchymal determination of mechanical strain-induced fetal lung cell proliferation.

نویسندگان

  • Jing Xu
  • Mingyao Liu
  • A Keith Tanswell
  • Martin Post
چکیده

Fetal breathing movements play an important role in normal fetal lung growth. We have previously shown that an intermittent mechanical strain regimen (60 cycles/min, 15 min/h), simulating normal fetal breathing movements, stimulated growth of mixed fetal rat lung cells in organotypic culture. In the present study, we examined the individual responses of the two major fetal lung cell types, fibroblasts and epithelial cells, to mechanical strain. Also, we investigated the effect of mesenchymal-epithelial interactions on strain-induced cell proliferation during fetal lung development. Fibroblasts and epithelial cells from day 18to day 21 fetal rat lung (term = 22 days), cultured alone or as various recombinants, were subjected to either a 48-h static culture or to strain, and DNA synthesis was measured. Both cell types responded individually to strain with enhanced DNA synthesis throughout late fetal lung development. Independent of the recombination ratio, there was no additive response to strain when fibroblasts and epithelial cells from the same gestation were recombined. In contrast, strain-induced DNA synthesis was suppressed when cells from different gestations were recombined. The ontogenic response pattern of recombinants to mechanical strain was similar to that of fibroblasts but not of epithelial cells. Strain-induced proliferation increased and peaked at the early canalicular stage of lung development at 19 days of gestation and declined thereafter. We conclude that strain-enhanced growth of the fetal lung is gestation dependent and that the gestational response to mechanical force is regulated by the mesenchyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical strain induces constitutive and regulated secretion of glycosaminoglycans and proteoglycans in fetal lung cells.

We have previously shown that an intermittent strain regimen, which simulates fetal breathing movements, enhanced mixed fetal rat lung cell proliferation in organotypic culture. As glycosaminoglycans (GAGs) and proteoglycans (PGs) may modulate growth factor activities, we investigated the effect of intermittent strain on the formation and secretion of GAGs and PGs. Mechanical strain increased t...

متن کامل

Differential regulation of extracellular matrix molecules by mechanical strain of fetal lung cells.

We have previously shown that an intermittent mechanical strain regimen (5% elongation, 60 cycles/min, 15 min/h) that simulates fetal breathing movements stimulated fetal rat lung cell proliferation. Because normal lung growth requires proper coordination between cell proliferation and extracellular matrix (ECM) remodeling, we subjected organotypic cultures of fetal rat lung cells ( day 19 of g...

متن کامل

Transplantation of Cardiogenic Pre-Differentiated Autologous Adipose-Derived Mesenchymal Stem Cells Induced by Mechanical Loading Improves Cardiac Function Following Acute Myocardial Infarction in Rabbit Model

Objective- Investigate myocardial performance after autologous adipose-derived (ASCs) mesenchymal stem cell differentiated under equiaxial cyclic strain, transplantation in rabbits with acute myocardial infarction (AMI). Design- Prospective, randomized experimental study Animals- 20 New Zealand White rabbits (2-3 kg) P...

متن کامل

Invited review: mechanochemical signal transduction in the fetal lung.

Growth and maturation of fetal lungs are regulated by both humoral and physical factors. Mechanical stretch stimulates fetal lung cell proliferation and affects fetal lung maturation by influencing the production of extracellular matrix molecules and the expression of specific genes of fetal lung cells. These effects are mediated through special signal transduction pathways in fetal lung cells....

متن کامل

The effect of mesenchymal stem cell ‑conditioned medium on the proliferation of cancer cell lines, A549 and JEG3

Background: Cancer is a significant public health problem. Some studies indicated the anti-cancer effects of mesenchymal stem cells. These effects are related to stem cells or secretory mediator of them. The aim of this study was to evaluate the impact of condition medium of mesenchymal stem cells on A549 and JEG3 cancer cell lines. Methods: In an experimental study, A549 and JEG3 cell lines p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 275 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1998